Collective Dynamics of
Complex Systems
(CoCo) Research Group

[What is CoCo?] [What Are Complex Systems?]
[CoCo Seminar Series] [Research Foci] [Projects] [Contact Us]
facebookTwitterYouTubeVimeo Scoop It!

What's New?

What Is CoCo?

CoCo is a campus-wide interdisciplinary research group at Binghamton University that studies the collective dynamics of various types of interacting agents as complex systems. Its goals are to

  1. advance our understanding about the collective dynamics of physical, biological, social, and engineered complex systems through scientific research,

  2. promote interdisciplinary collaboration among faculty and students in different schools and departments, and

  3. translate the understanding to products and processes which will improve the well-being of people at regional, state, national and global scales.

With the active participation of  faculty members with diverse backgrounds, CoCo has been playing a key role in producing several new interdisciplinary research projects since 2007.

There is a mailing list run by the CoCo group for general discussions on complex systems. To subscribe, please contact Hiroki Sayama.

List of Faculty Participants

See news article on CoCo in the 2009 Binghamton University Research Magazine

What Are Complex Systems?

Complex systems are networks of many components with nonlinear interactions which arise and evolve through self-organization, such that the system is neither completely regular nor completely random, permitting the development of emergent behavior. These properties can be found in many real-world systems, e.g., gene regulatory networks in a cell, physiological systems, brains and other neural systems, food webs, stock markets, the Internet, and social networking systems. We study their structural/dynamical properties to obtain general, cross-disciplinary implications and applications.

CoCo Seminar Series: Fall 2014

Wednesday 8:30-9:30am
ITC Biotechnology Building BI-2221
With refreshments; followed by free discussions

[Flyer in PDF]

September 10: Andreas Pape (Economics, Binghamton University)
"Concept Learning, Case-Based Reasoning, and the Future of Empirical Game Theory" [Flyer] [Video]

September 24: Xinpei Ma (Biomedical Engineering, Binghamton University)
"Hierarchical Heterogeneous Particle Swarm Optimization" [Flyer] [Video]

October 8: Mavi Ruiz-Blondet (Psychology/Biomedical Engineering, Binghamton University)
"BrainPrint: Identifying Unique Features of Brain Activity with Machine Learning" [Flyer]

October 22: Hiroki Sayama (Bioengineering/Systems Science, Binghamton University)
"Four Classes of Morphogenetic Collective Systems"

November 5:Jiangang Huang (Management, Binghamton University)
"Measurement Invariance in Leader-Member Exchange Scales"

November 19: Jeffrey Schmidt (Systems Science, Binghamton University)
"Uncovering the Underlying Dynamics of Real World Temporal Network Data Using Generative Network Automata"

December 3: Class Project Presentation by ECON 696H Students

Also check out the schedule of EvoS Seminars!!

Past Seminars

Spring 2014 / Fall 2013 / Spring 2013 / Fall 2012 / Spring 2012 / Fall 2011 / Spring 2011 / Fall 2010 / Spring 2010 / Fall 2009 / Spring 2009 / Fall 2008

Video Archives

See also HotCoCo, informal meetings organized and run by CoCo students.

Research Foci

Social Dynamics: The utilization and extension of agent-based modeling, evolutionary theory, game theory, and network theory to model, analyze and improve the behaviors of social systems. Current research topics include group decision making dynamics, multi-level analysis of organizational behavior, strategies in social interactions, and models of local community interactions, as well as their application for the improvement of the heathcare systems in local community.

Network Dynamics: The utilization and extension of complex network theory to explore the connectivity between elements, growth and self-organization, and dynamical evolution of various complex networks. Current research topics include theoretical models of coevolutionary adaptive networks and social network analysis.

Swarm Dynamics: The investigation of collective behavior and pattern formation in massive populations of biological or biomimetic autonomous agents. Current research topics include decentralized control and interactive design methods for homogeneous and heterogeneous self-propelled particle swarms and the application of particle models for ecological systems.


Contact Us

Hiroki Sayama, DSc, Director (Bioengineering & Systems Science and Industrial Engineering)
Andreas Pape, PhD, Associate Director (Economics)
Collective Dynamics of Complex Systems Research Group
Binghamton University, State University of New York,

© Copyright 2007-2014 Collective Dynamics of Complex Systems Research Group, Binghamton University

Powered By Mac OS X Server