Participatory Multi-Modelling for Decision Making Under Deep Uncertainty

Dr. ir. Igor Nikolic 02-03-22

Tel: +31152781135 Email: i.nikolic@tudelft.nl Web: https://ComplexEvo.org twitter: @ComplexEvo

Structure of the presentation

• Some context

- TU Delft, TPM, me
- Worldview
- Energy and Industrial Infrastructures
- Deep Uncertainty and (investment) decisions
- Participatory processes
- (multi) Modelling
- How it works in practice

TU Delft, TPM and me

- Dr. ir. Igor Nikolic,
 - Associate professor participatory multi-modelling
 - Chemical / bioprocess engineer, environmental sciences, modeling and decision making, highly multi- and transdisciplinary
 - PhD thesis on evolutionary modeling approach to ABMs of industrial systems
 - Dad, neurodiverse nerd, hobby blacksmith, wannabe artist (https://complexevo.org/ and https://twitter.com/ComplexEvo)
- Delft University of Technology (www.tudelft.nl)
 - Faculty (department) of Technology, Policy and Management (https://www.tudelft.nl/en/tpm/)
 - department of Multi-Actor Systems (

https://www.tudelft.nl/en/tpm/about-the-faculty/departments/multi-actor-systems)

Systems Engineering and Simulation group

Complex Adaptive Bio-Geo-Chemical-Socio-Technical System

- Systems view
 - It is all connected and always changing
- Sustainable development
 - Retaining the ability to adapt
- Post normal science
 - Facts, values and quality matter
- Transdisciplinary
 - "Stuff I know about" vs "My field"

(Funtowicz, S. and Ravetz, J., 1993. "Science for the post-normal age", Futures, 31(7): 735-755.)

4

More engineering than science Design science approach

- Engineering :
 - Explicit normative goals
 - Action and impact oriented
 - Acting with incomplete, imperfect and biased knowledge
 - "If it works, it ain't stupid"

• Design

- Application in real situations
- Platform and tooling development
- Methodological research

CoCo Seminar 02/03/2022

Energy infra and investments for transition

- Energy transition deeply uncertain
 - Use / technology change in households, transport, industry?
 - Which carrier & where?
 - Climate & extreme weather?
- Slow, expensive and "forever"
 - 380KV: ~ 10 year to build, ~6M€/GW/km, ~50-100 years
- Deep interconnection with other systems
 - Nat gas, H2, electricity, LT/HT heat, transport & mobility
- Culture of infra providers
 - Must Work, maintenance first, deterministic planning
- Disjointed, neo-liberal regulatory mess
 - Markets on natural monopolies, financial benchmarking

Challenge of the Decision maker **Reducing the uncertainty about the consequences of your actions**

Challenge of the Decision maker **Reducing the uncertainty about the consequences of your actions**

Two ways

- 1: Reduce your uncertainty about the future
 - Identify the single correct scenario
- 2: Make your decisions more robust to uncertainty
 - Deal with the the scenario space

from **Predict** and **Act** to **Explore** and **Adapt**

from predict to explore

- Scenario discovery (Bryant & Lempert 2010)
- Robust multi-objective optimization (Kwakkel et al. 2015)
- Info-Gap decision theory (Ben Haim, 2001; Hall et al. 2012)
- Adaptation tipping points (Kwadijk et al 2010)
- Decision scaling (Brown et al. 2012; LeRoy Poff et al. 2015)

from act to adapt

- Assumption-Based Planning (Dewar et al.1993)
- Adaptive Policymaking (Kwakkel et al 2010)
- Dynamic Adaptive Policy Pathways (Haasnoot et al. 2013)
- Robust Decision Making (Lempert & Collins 2007)

Walker, W.E., M. Haasnoot, and J.H. Kwakkel (2013) https://dx.doi.org/10.3390/su5030955

9

So how to Explore and Adapt?

- Explore : jointly develop networks of models together and test them across vast scenario spaces
- Adapt : robust, regret minimizing plans that with explicit adaptation choices

https://emaworkbench.readthedocs.io/en/latest/

Hermans, L. M., Haasnoot, M., ter Maat, J., & Kwakkel, J. H. (2017). Designing monitoring arrangements for collaborative learning about adaptation pathways. Environmental Science & Policy, 69, 29-38.

Participatory - why and how?

- Analysis, Design and Testing of participatory processes for
 - (multi)-modelling
 - analysis and sense-makling
- Use of (physical) games
 - on understanding decision making
 - communicating / sense-making of models
 - calibrating /developing models

CoCo Seminar

Participatory : Theoretical foundations

• Social Learning Systems

Wenger, E. (2000). Communities of Practice and Social Learning Systems. Organization, 7(2), 225-246. https://doi.org/10.1177/135050840072002

• Organisational learning / Levers of control

Simons, R. (1994). Levers of control: How managers use innovative control systems to drive strategic renewal. Harvard Business Press.

• Participatory Modelling

Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental modelling & software, 25(11), 1268-1281.

• Multi-level group selection / Collaboration cascades

Boyd, R., & Richerson, P. J. (2010). Transmission coupling mechanisms: cultural group selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1559), 3787-3795.

Boundary object (ecology)

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, translations' and boundary objects: Amateurs and professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Social studies of science, 19(3), 387-420.

• Serious Gaming

Lukosch, H. K., Bekebrede, G., Kurapati, S., & Lukosch, S. G. (2018). A scientific foundation of simulation games for the analysis and design of complex systems. Simulation & gaming, 49(3), 279-314.

Levels of participatory engagement

	In	form	Adapt	Join	
	Cooperation Continuum				
Form of Interest in Participation	Nominal	Instrumental	Representative	Transformative	
Cooperative Continuum	Unilateral Action	Coordination	Collaboration	Joint Action	
Control over Information Flow in Model Building	Information on research outcomes and no control over model use	Consultation and no control over model use	(1) Dialog with researchers & no control over model use, (2) Co-building of a model & no control over model use	(1) Dialog with researchers & control over model use, (2) Co-building of a model & control over model use.	
Type of Approach to Modeling with Stakeholders	Non-participatory Modeling	Instrumental Modeling	Representative Modeling	Transformative Modeling	
Distinct Approaches within each Type		 Program Evaluation Crowdsourcing 	 Participatory Modeling for Decision Support Generic Participatory (Environmental) Management 	 Group Model Building Companion Modeling Challenge and Reconstruct Learning Generic Collaborative Environmental Modeling 	

TUDelft

Modeling with stakeholders for transformative change, A van Bruggen, I Nikolic, J Kwakkel, Sustainability 11 (3), 825

CoCo Seminar 02/03/2022

Participatory modelling process and boundary object ecology design

Participatory multi-modelling as the creation of a boundary object ecology: the case of future energy infrastructures in the Rotterdam Port Industrial Cluster E Cuppen, I Nikolic, J Kwakkel, J Quist Sustainability Science 16 (3), 901-918

Participatory - Infrarium

• LAB

- · Controlled environment for behavioral observations
- Hi-def cameras and Biometric tracking for overview and emotional recognition AI
- SERIOUS GAMING RESEARCH
 - Design principle development for physical and emotional immersion
 - · Impact of emotional engagement in game effectivity
 - Repeatable game in a highly controlled environment
- MULTI MODELLING
 - · Backend simulation based on multi-model ecosystem concepts
 - Scaleable resolution and fidelity
- DECISION MAKING UNDER UNCERTAINTY
 - How does emotional stress and cognitive overload affect small groups of individuals making high-impact decisions?
 - Does a physical and emotional experience impact the decision making compared to purely rational intellectual processes?
- AFFECTIVE COMPUTING
 - Development of affective computing under low-quality environmental conditions (smoke, noise, low light)
 - Calibration of AI for relatively low stress situations
- DESIGN LOGIC
 - Modular platform design : easy reconfiguration and reuse of components for different types of games
 - Maximal reuse of second hand materials and equipment
 - Low cost approach to construction and hardware control
 - Open source design

CoCo Seminar 02,

Modelling learning in participatory processes

Theory	Origin	Main source - Selection based on modelability, perceived usefulness and (inter)compatibility
Group diversity and conflict theories	Social psychology	*Jehn, K. A., Northsraft, G. B., & Neale, M. A. (1999). Why differences make a difference: A field study of diversity, conflict and performance in workgroups. Administrative science quarterly, 444, 741-763. "Creer, L. L., Brin, K. A., & Manne, E. A. (2008). Conflict transformation: A longitudinal impediation of the relationships between different types of intragroup conflict and the moderating rele of conflict resolution. Small group research, 398, 278-302.
Social categorisation theory	Social psychology	*Hogg, M. A., & Reid, S. A. (2006). Social identity, self-categorization, and the «communication of group norms. Communication theory, 16(1), 7-30. *Hogg, M. A., & Tindale, S. (2008). Blackwell handbook of social psychology: Group processes. John Wiley & Sons.
Faceworks	Communication science	Littlejohn, S. W., & Foss, K. A. (2010). Theories of human communication. Waveland press.
Input-process- Output model	Communication science	Littlejohn, S. W., & Foss, K. A. (2010). Theories of human communication. Waveland press.
Common Knowledge effects	Social psychology	Stasser, G., & Titus, W. (1983). Pooling of unshared information in group decision making: Biased information sampling during discussion. Journal of personality and social psychology. 48(6), 1467.
Cognition and information processing theories	Communication science & Social psychology	Littlejohn, S. W., & Fors, K. A. (2010). Theories of human communication. Waveland press.
Information integration theory	Communication science	Littlejohn, S. W., & Foss, K. A. (2010). Theories of human communication. Waveland press.

- Formalise our understanding of these processes
- Link with empirical observations
 - infrarium data on emotional states and cognitive overload
 - sociological/psychological observations
- Long term goal : design tool for social processes

Modelling social learning during participatory modeling processes, N Peters, I Nikolic, G de Vries 10th International Environmental Modelling and Software Society

CoCo Seminar 02/03/2022

Multi-modelling : boundary object for social learning

• Why:

- More comprehensive understanding of impact of decisions
- Comparison of different model of the same system
- Reuse of existing models
- How:
 - Ad-hoc model coupling
 - Multi-model infrastructure?
- Really hard!
 - methods and tools sorely lacking
 - uncertainty (propagation)
 - scaling
 - · interoperability of different operational principles

Multi-modelling

- Traditionally :
 - Hard systems engineering
 - Command and control paradigm
 - High Level Architectures (HLA)
 - Task oriented

- Now :
 - Socio-technical process
 - No control over model parts
 - Massive technical debt
 - Policy oriented

Core concepts : Coupled fitness landscapes and Multi-model ecologies

Kauffman, Stuart A., and Sonke Johnsen. "Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches." Journal of theoretical biology 149.4 (1991): 467-505.

Principles, challenges and guidelines for a multi-model ecology. Nikolic, I., Warnier, M., Kwakkel, J. H., Chappin, E. J. L., Lukszo, Z., Brazier, F. M., ... & Palensky, P. (2019). Whitepaper

<u>Multimodel ecologies: cultivating model ecosystems in industrial ecology</u> LA Bollinger, I Nikolić, CB Davis, GPJ Dijkema - Journal of Industrial Ecology, 2015

CoCo Seminar 02/03/2022 19

multi-model.nl : project in a nutshell

- 2 years, start 1 sept 2021
 - Spring 2022 : hello world
 - Summer 2022 : first operational version
 - Autumn 2023 : 3rd iteration MVP
- Practice, R&D and academia in close collaboration
- Case driven, agile, learning by doing
- Focus on methods, tooling and community
- Main goal :

making (modelers/ energy consultants) life easier and the models more powerful

Goals of multi-model.nl

- Researches, designs and implements a "minimum viable product" multi-model infrastructure for integral decision making in the energy transition
- Coupling of models within a technical platform and methodological framework
- Allows for model interactions that are
 - Transparent
 - Traceable
 - Testable
- Design, support and understanding supported by a Community Of Practice
 - Modelers
 - Decision makers
 - Researchers

Multi-modelling chalanges

Axis 1: Location in social alignment		Axis 2: Location in the modelling process and activities				
Examples of alignment of social understanding pathways during the modelling process (Qualitative scale with bottlenecks indicating incommensurable positions; and perfect alignment of views, ideas and goals otherwise.)		Degree of interpretatior	Modelling process			Dominant discourse
		Multiple Single Multiple	PROBLEM FORMULATION AND ACTOR IDENTIFICATION SYSTEM IDENTIFICATION AND DECOMPOSITION CONCEPT FORMALISATION INPUT DATA GATHERING MODEL FORMALISATION SOFTWARE IMPLEMENTATION MODEL VERIFICATION MODEL PARAMETRIZATION EXPERIMENTATION DATA ANALYSIS MODEL VALIDATION MODEL USE	SOCIAL PROCESS. DO WE ASK THE RIGHT QUESTION? CONCEPTUAL MODEL: HOW DO WE THINK ABOUT IT? COMPUTER MODEL STRUCTURE: HOW DO WE REPRESENT IT? INPUT DATA: WHAT DO WE PLIT INTO IT? TECHNICAL MODEL IMPLEMENTATION. HOW DO WE BUILD IT? TECHNICAL MODEL EXECUTION. WHAT IS THE EXPERIMENTAL DESIGN? OUTPUT DATA: WHAT DO WE TAKE OUT OF IT? COMMUNICATION. HOW DO WE TALK ABOUT IT?		Social Technical Social
AS THE AS THE DISAGREEMENT MODELLING MODELLING IN THE SOCIAL PROCESS PROCESS REALM (IE. ON PROGRESSES, PROGRESSES, SYSTEM ALIGNMENT OF ALIGNMENT CONCEPTUALIZATION VIEWPOINTS OF DECREASES VIEWPOINTS INTERPRETATION)	DISAGREEMENT IN THE TECHNICAL REALM (IE. ON METHODS OF TECHNICAL IMPLEMENTATION					

Participatory : Quantifying social process

Qualitative survey overview:

To what extent do respondents think all participants are aligned in their goals and expectations?

Participatory: Group divide on level of participation

Score for '2. My participation was useful for others'

Social learning in participatory multi-modelling: Crossing boundaries for multi-party collaboration,

S. ten Caat, A. de Looze, Free research coursework paper, Leiden University 2022

In practice : Gridmaster.nl project

Gridmaster scope

GRIDMASTER HIC ROTTERDAM – GEOGRAFISCHE SCOPE

Multi-model setup

Scenario space > 10^30 plausible pathways

- Scenario space:
 - Total set of scenarios

- Scenario:
 - Current situation + structural change

Specific scenario -> "future history"

ILLUSTRATION OF ONE SCENARIO

		in a cilla anabara	A S CWs and have wind	10.2 CW/s see bars	nintertand
	wind	wind	+0,5 Gwe onshore wind	wind	
+0,5 GWe offshore wind	+1,5 GWe offshore wind	+2 GWe offshore wind	+3 GWe offshore wind	+2 GWe offshore wind	+1 GWe offshore wind
	H-Vision scenario 1				
			Shell: Switch PERGEN to 100%	Shell: +1 GW MTO plant	
			+3 GW synthetic fuel plant		
	BP hydrocracker		BP: +2 GWe H ₂ O electrolyis +3 GW synthetic methanol		BP: oil refinery plant cl
	Oil refinery Gunvor closed				
	Switch to H ₂ -boilers and H ₂ -furnaces				
		+2 GWe H ₂ O electrolysis at non-refinery sites	+1 GWe H ₂ O electrolysis at non-refinery sites	+3 GWe H ₂ O electrolysis at non-refinery sites	
		Shinetsu VCM + PVC plants to half capacity	Chlorine cluster closed		
Other developments	Other developments	Other developments	Other developments	Other developments	Other developments

Voorbeeld analyse: tijdserie clusteren – TenneT groep 3

Cluster groep	Cluster ID's	# scenario's in groep	
1	5	4908	
2	7	2545	Robuustheidsscore
3	2	1369	van 4908/10011
4	0, 2	1848	= 48,6 %
5	0, 4, 9, 10	745	
6	0, 1, 3, 6, 8	923	

Gridmaster project internal documentation

Recap - Takeaway

- Participatory
 - transformative collective sense-making of the world
 - modelling, quantification and design of the process
- Multi-modelling
 - processes for creating (multi-)models
 - methods for using them (uncertainty, scale, operating principles)
 - creation of social and technical infrastructure for multi-models
- Decision making under deep uncertainty
 - Scenario spaces and structural uncertainty exploration
 - Goal oriented impact on investment decision process
- In close industry government academia collaboration

Thank you very much!

0

i.nikolic@tudelft.nl @ComplexEvo