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• Mathematics and Methodology: 
 Hypergraphs for hypernetwork science: 

Hypergraph walks, centrality, connectivity, 
Laplacians, clustering

 Computational topology and multidimensional 
data analysis: Homological hypergraph analysis, 
topological data analysis, topological sheaves for 
data integration

• Software
 HyperNetX (HNX, Python): Human scale

 Proving ground for methods
 User interfaces: Visualization

 Chapel Hypergraph Library (CHGL): HPC scale
 Data parallel language

• Applications
 Cyber: DNS, Netflow
 OSINT
 Computational virology
 Combinatorial chemistry
 Scientometrics, open source analysis
 Multi-criteria decision analysis
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Pacific Northwest National Laboratory:
Topology and High Order Networks
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Hypernetworks and 
Computational  
Topology

Graphs

Hypergraphs

Included
Edges

> 2 interacting
elements

Abstract Simplicial 
Complexes

(Persistent)
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(TDA)

Topological 
Spaces

Data layer
Quantitative weights
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Sheaves

Network
Science

Hypernetwork
Science

Ghrist, Robert: (2007) “Barcodes: The 
Persistent Topology of Data”, Bulletin 
of the American Mathematical 
Society, v. 45:1, pp. 61-75

A, 3.0 B, 4.0

C 5.5

1 2 3

4
5

6

7

8

F 1.5

E 5.5

Joslyn, Cliff A et al.: (2021) "Hypernetwork Science: From Multidimensional Networks to 
Computational Topology", in: Unifying Themes in Complex systems X: Proc. 10th Int. Conf. 
Complex Systems, ed. D. Braha et al., pp. 377-392, Springer, https://doi.org/10 .1007/978-3-030-
67318-5_25



Python package for modeling complex data as hypergraphs

 Latest release 2.0 is now available!!!
 First release 2018, 24 releases
 Sponsor/Project driven
 Multiple contributors
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HyperNetX (HNX) 2.0 (May 2023)!
https://github.com/pnnl/HyperNetX

 Combinatorics – Statistics
 S-metrics, S-linegraphs
 Topology – Simplicial Homology
 Generative models
 Laplacian Clustering
 Clustering and Modularity
 Contagion
 Cell and Object Property support
 Internal Vis and HNXWidget package
 Multiple tutorials, demos
 Built on Pandas DataFrames
 Highly interoperable with Networkx, Matplotlib, 

and other hypergraph libraries
 ReadTheDocs page available

https://pnnl.github.io/HyperNetX/index.html
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Today’s Story
• How can we relate together 

mathematical models of 
complex systems 
involving:

1. Complex Networks: (Multi-
way) connections of items

2. Hierarchies: Arrangements 
of items in levels

3. Topologies (finite): Gluing 
together structures of 
different dimensionalities

• 0. Rooted in mathematical 
systems theory

Klir, George and Elias, Doug: (2003) Architecture of 
Systems Problem Solving, Plenum, New York, 2nd edition

Sowa, John F: (2000) 
Knowledge Representation: 
Logical, Philosophical, and 
Computational Foundations, 
Brooks/Cole, Pacific Grove
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Systems Foundations
• Some systems concepts

• Grounded in rigorous modeling
• Mappings among mathematical formalisms (hint: category theory)
• Applied across disciplinary boundaries

Order Organization Control Complexity
Representation Structure Hierarchy Growth
Information Development Adaptation Evolution
Heterarchy System Network Aggregate
Emergence Constraint Function Goal
Purpose Stability Subsystem Supersystem
Scale Environment Distinction Relation
Input Output Throughput State

Order Organization Control Complexity
Representation Structure Hierarchy Growth
Information Development Adaptation Evolution
Heterarchy System Network Aggregate
Emergence Constraint Function Goal
Purpose Stability Subsystem Supersystem
Scale Environment Distinction Relation
Input Output Throughput State
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A Binghamton Journey From 1985
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0. Mathematical Systems Theory
• System: Multivariate relation

• Dimension: Each Xi can be “anything”
 Scalar quantity: Integer, float, etc.
 Boolean: 0/1
 Categorical variable: A,B,C
 Ordinal variable:

 Time! Dynamics!
 String: “abz”
 Arbitrary structure: List, vector
 Etc.
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Network Models of 
Complex Relational 
Data

• Many real-world data sets have 
complex relational structure
 Cyber security: Domains x IP 

Addresses x MAC Addresses x 
Malware IDs x …

 Social networks: People x Groups
 Bibliometrics: Authors x Papers x 

Keywords
 Biology: Proteins x Pathways, 

Complexes 
 CBP: Airline Passengers x Border 

Crossings x Cargo Shipments
 Multi-Criteria Decision Analysis 

(MCDA): Products x Capabilities
• Modellable as e.g. pandas data 

frame:
 Columns: Dimensions Xi
 Rows: Points or vectors 

• Relational network structures:
 Graph: Self-relation
 Hypergraph: Binary relation
 Tensor: Multi-way relation
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Projections of Multivariate Data
• Mass spectrometry features in an n-

dimensional space: MS-LC-IMS (ion 
mobility)

• Projections into lower dimensional spaces
• Nested spectra
• Discretized (peak-picked) data

Colby, Sean; Shapiro, Madelyn; Bilbao, Aivett; Broeckling, C;  Lin, Andy;  Purvine, Emilie; 
Joslyn, Cliff  A: (2023) ``Introducing Molecular Hypernetworks for Discovery in 
Multidimensional  Metabolomics Data”, submitted to J Proteome Research



• Boolean tensor, 
incidence tensor

• 2D projections
• Duals: Matrix transposes

e.g. 

A Discrete Relation
Paper Authors Keywords

1 Andrews, Davis Graphs

2 Andrews, Carter, Davis Topology

3 Davis Graphs, topology

4 Andrews, Bailey Lattices

5 Bailey, Carter Lattices, topology

1 2 3 4 5

Andrews X X

Bailey X X X

Carter X X

Davis X X X

Lattices Topology Graphs

Andrews X X X

Bailey X X

Carter X X

Davis X X

1 2 3 4 5

Lattices X X

Graphs X X

Topology X X X

Papers

A
uthors



Hypergraphs Instead of Graphs

Paper # Authors

1 Andrews, Davis

2 Andrews, Carter, Davis

3 Davis

4 Andrews, Bailey

5 Bailey, Carter

Andrews Bailey Carter Davis

Andrews X X X

Bailey X X

Carter X X X

Davis X X

Andrews

Bailey

Carter

Davis

Graph
representation

Hypergraph
representation

Coauthorship Matrix



• A binary relation: Incidence, not adjacency, information
• Bipartite network: Bijective
• Graph on rows: Pairwise relations
• Graph on columns: Pairwise relations

• Hypergraph on rows (“primal”): Multiway relations
• Hypergraph on columns (“dual”): Multiway relations
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Graphs, Hypergraphs, and Relations

2-section of primal =
Clique expansion =
Underlying graph

Line graph of primal = 
2-section of dual

1 2 3 4 5
a X X X
b X X
c X X
d X X X



(R;<M,D>)
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• Data tensor
• Projection: Two (combinations of) 

dimensions
 Vertices: For each retention time
 Hyperedges: What <m/z, drift> values 

are seen? 
 View: (R;<M,D>) determines a 

hypergraph

• Isomers separated by 
chromatography: (R;<M,D>) 
Different RT; same m/z, drift

• Isotopic Peaks: (M;<R,D>) 
Different m/z, same drift, same RT

• Adducts, In-source-fragments, 
Dimers/trimers: (<M,D>;R) 
Different m/z, different drift, same RT

• Isomers separated by mobility: 
(D;<R,M>) Same m/z, different drift, 
same RT

(M;<R,D>)

(D;<R,M>)(<M,D>;R)

Network Representations of Relational View 
Projections Colby, Sean; Shapiro, Madelyn; Bilbao, Aivett; Broeckling, C;  Lin, Andy;  Purvine, Emilie; 

Joslyn, Cliff  A: (2023) ``Introducing Molecular Hypernetworks for Discovery in 
Multidimensional  Metabolomics Data”, submitted to J Proteome Research



Bipartite Graph

Euler Diagram
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Basic Hypergraphs (undirected, unordered)

1 2 3 4 5
a X X X
b X X
c X X
d X X X

Incidence Matrix

Simplicial Diagram

a

b

c

d

1

2
3

4

5

(Multi)Set System
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4

5

d

a

c

b

1

a

d

2

3

4

5b

c
• Axioms matter!

 Singletons v vs. {v}, isolated vertices, 
empty edges, multi-edges, multi-
vertices, self-loops
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Categorical Hypergraph Foundations
• Sets:
• Axioms: 

Binary Relations

Hypergraphs: 
Incidence function

Bipartite Graphs

Hypergraphs:
Set system 

E must be a multiset, or an 
indexed family of subsets
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Graphs vs. Hypergraphs: Precis

• Graphs:
 Connections have length
 Simple
 Lossy for multi-way 

interactions
 Small (quadratic)

• Hypergraphs:
 Connections have 

length and width
 Complex
 Lossless
 Large (possibly 

exponential)
 Advanced 

mathematical 
properties 
(topology)

1 2 3 4 5
a X X X
b X X
c X X X
d X X

Co-Authorship
Graph

Collaboration
Hypergraph

1 2 3 4 5
a X X X
b X X
c X X
d X X X

Andrews

Bailey

Carter

Davis

1

2

3

4

5
Bailey

3

Andrews

Carter

Davis
5

1 4

2

A graph is 2-uniform hypergraph
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Burgeoning Movement 
in Network Science

Iacopini, Iacopo; Petri, Giovanni; Barrat, Alain; and Latora, Vito: (2019) 
“Simplicial Models of Social Contagion”, Nature Communications, v. 10, p. 2485 

Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon 
Kleinberg: (2018) “Simplicial closure and higher-order link prediction”, PNAS  
November 27, 2018 115 (48) E11221-E11230; 
https://doi.org/10.1073/pnas.1800683115

Federico Battistona, Giulia Cencettib, Iacopo Iacopini, Vito Latora, 
Maxime Lucash, Alice Pataniak, Jean-Gabriel Young, Giovanni Petri: 
(2020) “Networks beyond pairwise interactions: Structure and 
dynamics”, Physics Reports,  Volume 874, 25 Pages 1-92, 
https://doi.org/10.1016/j.physrep.2020.05.004

Landry, Nicholas and Restrepo, Juan 
G:  (2020) “The Effect of Heterogeneity 
on Hypergraph Contagion Models”, 
Chaos, 30:10, pp. 3117, 
https://doi.org/10.1063/5.0020034

Leo Torres, Ann S. Blevins, Danielle S. Bassett, Tina Eliassi-Rad: 
(2021) “The why, how, and when of representations for complex 
systems”, SIAM Review, 63:3, pp. 435–485

Bick, Christian; Gross, Elizabeth; Harrington, Heather A; and 
Schaub, Michael T: (2021) “What Are Higher Order Networks?”, 
https://arxiv.org/abs/2104.11329



• Hypergraph Paths Have Width: Minimum edge intersection
• s-walk: Sequence          when

• Extend generally:
 s-distance:
 s-components, s-centrality, s-diameter s-motifs, s-clustering coefficient
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1. Hypergraph Walks Have Length and Width

A Graph Path: 
(Edgewise) length = 2
Width (necessarily) 1

Two Hypergraph Paths:
Same (edgewise) length = 2

Weak interactions: 
Width=s=1

Strong interactions: 
Width=s=3

As a 2-uniform HG

SG Aksoy, CA Joslyn, CO Marrero, B Praggastis, EAH Purvine: (2020) “Hypernetwork Science via High-
Order Hypergraph Walks”, EPJ Data Science, v. 9:16, doi.org/10.1140/epjds/s13688-020-00231-0
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s-Closeness centrality

• Question: Which nodes or edges are 
“close” to everything?

Closeness Centrality Harmonic Closeness Centrality

Graphs

Hypergraphs

Image credit: Wikipedia user Tapiocozzo, https://en.wikipedia.org/wiki/Centrality

s=2
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s-Betweenness centrality

• Question: Which nodes or edges are on 
many shortest paths?

Betweenness Centrality

Graphs

Hypergraphs

Image credit: Wikipedia user Tapiocozzo, https://en.wikipedia.org/wiki/Centrality
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Example: Biological Data
• Mouse and human cells infected with viral 

strains: 
 Ebola, Influenza, MERS, SARS, West Nile Virus
 Samples analyzed at various time points post-

infection
 Transcriptomics data: measuring expression of gene 

transcripts
 Log2(sample / control) for each [sample, gene] pair

• Hypergraph:
 Nodes = conditions (virus, strain, cell type, 

time point, …) 
 Edges = genes
 Node/edge containment = genes with 

log2(fold change) z-score ≥ 2 and p-value < 
0.05 for a given condition

…
…

Feng, S., Heath, E., Jefferson, B., Joslyn, C., Kvinge, H., Mitchell, H.D., 
Praggastis, B., Eisfeld, A.J., Sims, A.C., Thackray, L.B., Purvine, E., et al. 2021. 
Hypergraph models of biological networks to identify genes critical to pathogenic 
viral response. BMC Bioinformatics, 22(1), pp.1-21.



• Goal: Find genes which are central in 
host response to viral infection

• Hypothesis: Hypernetwork science 
measures will rank known central genes 
(e.g., immune response) higher than 
network science in context likelihood of 
relatedness (CLR) graph, and higher than 
simple measures

• Enrichment score (GSEA):
Determine whether members of a 
known gene set tend to occur toward 
the top (or bottom) of a ranked list
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Hypergraphs for identifying 
important genes

Subramanian, Aravind, et al. "Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles." Proceedings 
of the National Academy of Sciences 102.43 (2005): 15545-15550.

Rank 1
Rank 2
Rank 3
Rank 4

Rank N-3
Rank N-2
Rank N-1
Rank N

…
Target set

{a1, a2, …, ak}

High (positive) GSEA

Low (negative) GSEA

Around zero GSEA
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Gene Enrichment Scores

Feng, S., Heath, E., Jefferson, B., Joslyn, C., 
Kvinge, H., Mitchell, H.D., Praggastis, B., 
Eisfeld, A.J., Sims, A.C., Thackray, L.B., 
Purvine, E., et al. 2021. Hypergraph models of 
biological networks to identify genes critical to 
pathogenic viral response. BMC 
Bioinformatics, 22(1), pp.1-21.
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2. Hypergraphs Have Hierarchy

A B
Included 
EdgesN/A

Hypergraph Graph

A B

Disjoint 
Edges

A B

Incident 
Edges

A B

A B
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Hierarchy Theory
• Systems admitting to descriptions in 

terms of levels: Height, depth
 Necessary for viable organization of large 

complex systems
 Natural scale dependencies and interactions

• The Systems community has attended 
less to mathematical formalism
 Way more than trees
 Avoiding ethical implications of authoritarian 

social hierarchies
• Partial order on set P:

Reflexive, symmetric, anti-transitive
• Poset:
• Lattice: Unique pairwise common 

parent/child
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Some Aspects of Hierarchies = Partial Orders

Totally
Bounded

Totally
Unbounded

Antichain
(Totally unordered)

Tree
(Unique Parents)

Dual
Structure

Chain
(Totally ordered)
(Unique parents

and children) Ungraded
(Unequal chain lengths)

(Ambiguous levels)Joslyn, Cliff A; Pogel, Alex and Purvine, Emilie A: (2017) "Interval-Valued Rank in Finite 
Ordered Sets", Order, v. 34:3, pp. 491-512, https://doi.org/10.10 07/s11083-016-9411-2

Nodes with
multiple

parents/children

Not a lattice
(Pairs with multiple
parents/children)
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Hypergraph 
Inclusivity

• Hypergraph:
 2 included edges: 1, 3
 3 “toplexes”: Maximal 

hyperedges: 2, 4, 5
 Inclusivity = 2/5

• Simple hypergraph: 
Remove all inclusions
 All toplexes
 “Reduction”
 Inclusivity = 0

• Abstract simplicial 
complex (ASC): Add all 
inclusions
 Toplexes and all below
 “Closure”
 Inclusivity = 7/10

• All share the same 
topological structure: 
Determined by toplexes

• and      are one-to-one
October 1, 2023

5 4

2

8

1

6

9

7

10

3

Hypergraph Simplicial diagram Edge poset



1 2 3 4 5 6 7 8
a x x x x x
b x x x
c x x x x x
d x x

1 2 3 4 5 6 7 8 9 10 11
a x x x x x x
b x x x x
c x x x x x x
d x x x x

1 2 3 4 5
a x x x
b x x x
c x x x
d x x
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Hypergraphs Are 
Inherently Ordered

• Hyperedges have an inclusion order
• But more completely an intersection 

structure: intersection complex
• Theorem: Intersection complex is 

bijective to the concept lattice
 “Galois notation” shows joint 

relationships of unions, intersections of 
vertices, edges

• Questions: How are hypergraph 
operations mirrored in the concept 
lattice?

• Theorem: Closing by subset yields 
the ASC in the HG, and the “Dowker
cosheaf” in the lattice structure

Robinson, Michael: (2022) ``Cosheaf Representations of Relations 
and Dowker Complexes”, J. Applied and Computational Topology, v. 
6, pp. 27-63

Rawson, Michael G; Myers, Audun; Green, Robert; Robinson, 
M;  Joslyn, Cliff: (2023) ``Formal Concept Lattice 
Representations and Algorithms for Hypergraphs'', 
https://doi.org/10.48550/arXiv.2307.11681
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Example Concept Lattice of a Hypergraph

A
B

C

1 2 3

4
5

6

7

8

F

E

AF = 12

ABF = 2

AB = 25

ABC = 5

A = 1245

BE = 3

B = 2356 E = 38C = 4567

BC = 56AC = 45
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• DARPA/I2O/AIDA Performers, 2018:
• Entity, relation, event extraction
• Graph integration

• Open source information about 2014 Russian invasion of Eastern Ukraine
• Multi-value attributes exist such as ‘name’ and ‘type’
• Temporal information exist for a subset of nodes

• Richly Attributed: Graph Ontology: 
• Nodes: Entity, event, relation types
• Edges: Relationships (roles) of entities within events/relations

• Real-world Data
• Noisy / many inaccuracies
• Most noise seems to come from incorrect relationships between nodes

• Original data represented as RDF triples
• Converted to property graph by PNNL: Neo4J

GPE.
Country.
Country

OrganizationAffiliation.
EmploymentMembership.
Employment.
PlaceOfEmployment

OrganizationAffiliation.
EmploymentMembership.
Employment

OrganizationAffiliation.
EmploymentMembership.
Employment.
Employee

PER.
ProfessionalPosition.
Minister

Node and edge types associated with a small graph sample. 
Center node is a “relationship node” connecting two entities together.

Ukraine 2014 (UKR14) 
Knowledge Base

• Node Types: 307 
• Node Instances: 406K
• Edge Types: 367
• Edge Instances: 302K
• Connected Components: 314K
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Event Hypergraph Model
• UKR14 is broadly bipartite: Events/relations valued on entities
• Generally supports hypergraph representation: 
 Event/relation node: Hyperedge
 Entity node: Hypernode

киевского
Антимайдана

OrganizationAffiliation.Leadership Conflict.Attack.FirearmAttack
Oleg

Kalashnikov Rishi Kant

IndianПартии
Регионов



UKR14 Example Concept Lattice

Rawson, Michael G; Myers, Audun; Green, Robert; Robinson, M;  Joslyn, Cliff: 
(2023) ``Formal Concept Lattice Representations and Algorithms for Hypergraphs'', 
https://doi.org/10.48550/arXiv.2307.11681



• Hypergraphs have topological properties

• (Simplicial) homology identifies multidimensional 
open structures
 As hypotheses for missing data
 Need for bridging metadata

hollow!

35

3. Hypergraphs are 
Topological 
Objects

1-dim 2-dim0-dim
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Homologies Show Multidimensional 
Open Structures

• DNS2: One generator of a 
2-hole, tetrahedral void

https://activednsproject.org/
Joslyn, Cliff A; Aksoy, Sinan; Arendt, Dustin; Firoz, J; Jenkins, Louis; Praggastis, 
Brenda; Purvine, Emilie  AH; Zalewski, Marcin: (2020) “Hypergraph Analytics of 
Domain Name System Relationships”, 17th Wshop. on Algorithms and Models for the 
Web Graph (WAW   2020), Lecture Notes in Computer Science, v. 12901, ed. 
Kaminski, B et al., pp. 1-15, Springer, https://doi.org/10.1007/978-3-030-48478-1_1
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Temporal Hypergraph Analysis

• Temporal 
hypergraph

• Trajectory of 
temporal sub-
hypergraphs

• Measure change in 
structure, homology, 
distributions
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• Temporal sequences
 Are there topological features that persist over time in a dynamically evolving system?

Zigzag Persistence Example

𝑡 0

𝑡 0.5 𝑡 1.5 𝑡 2.5 𝑡 3.5

𝑡 1 𝑡 2 𝑡 3 𝑡 4

∅
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Operationally Transparent Cyber (OpTC) data set
• Created by the Defense Advanced Research Projects Agency (DARPA) as 

part of a mission to test scaling of cyber attack detection
• Flow and host logs from both benign and malicious activity plus ground truth 

document describing the attack events
 Downloading malicious PowerShell Empire, privilege escalation, credential theft, 

network scanning, and lateral movement

• Example subset of
OpTC flow data: Time Action‐Object PID Source IP Destination IP Dest. Port Executable

9/23/2023 9:06 MESSAGE‐FLOW 864 10.20.2.47 224.0.0.252 5355 svchost.exe
9/23/2023 9:06 MESSAGE‐FLOW 864 10.20.2.47 224.0.0.252 5355 svchost.exe
9/23/2023 9:06 MESSAGE‐FLOW 864 10.20.2.93 224.0.0.252 5355 svchost.exe
9/23/2023 9:06 MESSAGE‐FLOW 864 10.20.2.93 224.0.0.252 5355 svchost.exe
9/23/2023 9:06 MESSAGE‐FLOW 2236 10.20.2.66 225.0.0.1 5000 python.exe
9/23/2023 9:06 MESSAGE‐FLOW 3980 10.20.4.133 10.20.2.66 5959 python.exe

Myers, Audun; Bittner, Alyson S; Aksoy, Sinan G; Best, Dan, Roek, G;  Jenne, Helen;  Joslyn, Cliff;  Kay, Bill;  Seppala, 
Garret;  Young, Stephen; Purvine, Emilie  AH: (2023) “Malicious Cyber Activity Detection Using Zigzag Persistence”, 
IEEE Dependable and Secure Computing Wshop on AI/ML for Cybersecurity  (AIML 23), arXiv:2309.08010
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Zigzag ML Experiment on OpTC

• Goal: identify source IPs responsible 
for malicious activity, and the time 
interval that activity occurred

• Method: construct temporal 
hypergraph sequence for each host, 
run zigzag persistence, train 
autoencoder on barcode summary
 Nodes: Executable files
 Edges: Destination ports
 10 minute time windows per HG
 Dimension 0, 1 zigzag on hour of HGs
 Adcock-Carlsson barcode coordinates 
 Autoencoder trained on hosts not found 

in ground truth document

Zigzag barcode for known ground truth IP, 
time windows of red team activity highlighted

Autoencoder reconstruction loss

Myers, Audun; Bittner, Alyson S; Aksoy, Sinan G; Best, Dan; 
Roek, G;  Jenne, Helen;  Joslyn, Cliff;  Kay, Bill;  Seppala, 
Garret;  Young, Stephen; Purvine, Emilie  AH: (2023) 
“Malicious Cyber Activity Detection Using Zigzag Persistence”, 
IEEE Dependable and Secure Computing Wshop on AI/ML for 
Cybersecurity (AIML 23), arXiv:2309.08010



Zigzag barcode for known benign IP
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• Goal: identify source IPs responsible 
for malicious activity, and the time 
interval that activity occurred

• Method: construct temporal 
hypergraph sequence for each host, 
run zigzag persistence, train 
autoencoder on barcode summary
 Nodes: Executable files
 Edges: Destination ports
 10 minute time windows per HG
 Dimension 0, 1 zigzag on hour of HGs
 Adcock-Carlsson barcode coordinates 
 Autoencoder trained on hosts not found 

in ground truth document

Autoencoder reconstruction loss

Myers, Audun; Bittner, Alyson S; Aksoy, Sinan G; Best, Dan; 
Roek, G;  Jenne, Helen;  Joslyn, Cliff;  Kay, Bill;  Seppala, 
Garret;  Young, Stephen; Purvine, Emilie  AH: (2023) 
“Malicious Cyber Activity Detection Using Zigzag Persistence”, 
IEEE Dependable and Secure Computing Wshop on AI/ML for 
Cybersecurity (AIML 23), arXiv:2309.08010

Zigzag ML Experiment on OpTC
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Closing Thoughts

• Delighted to be back in the SSIE department
 Current work with Kevin Stoltz, Grant Generaux, Prof. Sayama
 Next work with you?

• PNNL also works extensively with universities in multiple roles and modes

• cajoslyn@binghamton.edu
• cliff.joslyn@pnnl.gov

https://cliffjoslyn.github.io



Thank you
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